APOYO A LA ELECTRICIDAD Y ELECTRONICA
domingo, 23 de octubre de 2011
CLASIFICASION DE LOS ROBOTS
|
OSCILADOR
Un oscilador es un sistema capaz de crear perturbaciones o cambios periódicos o cuasiperiódicos en un medio, ya sea un medio material (sonido) o un campo electromagnético (ondas de radio, microondas, infrarrojo, luz visible, rayos X, rayos gamma, rayos cósmicos).
En electrónica un oscilador es un circuito que es capaz de convertir la corriente continua en una corriente que varía de forma periódica en el tiempo (corriente periódica); estas oscilaciones pueden ser senoidales, cuadradas, triangulares, etc., dependiendo de la forma que tenga la onda producida. Un oscilador de onda cuadrada suele denominarse multivibrador y por lo tanto, se les llama osciladores sólo a los que funcionan en base al principio de oscilación natural que constituyen una bobina L (inductancia) y un condensador C (Capacitancia), mientras que a los demás se le asignan nombres especiales.
Un oscilador electrónico es fundamentalmente un amplificador cuya señal de entrada se toma de su propia salida a través de un circuito de realimentación. Se puede considerar que está compuesto por:
- Un circuito cuyo desfase depende de la frecuencia. Por ejemplo:
- Oscilante eléctrico (LC) o electromecánico (cuarzo).
- Retardador de fase RC o puente de Wien
- Un elemento amplificador
- Un circuito de realimentación.
http://es.wikipedia.org/wiki/Oscilador
DIODO
Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo.

http://es.wikipedia.org/wiki/Diodo

http://es.wikipedia.org/wiki/Diodo
CIRCUITOS INTEGRADOS
Circuito integrado
Un circuito integrado (CI), también conocido como chip o microchip, es una pastilla pequeña de material semiconductor, de algunos milímetros cuadrados de área, sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre la pastilla y un circuito impreso.

http://es.wikipedia.org/wiki/Circuito_integrado
AMPLIFICADORES DE POTENCIA
AMPLIFICADORES DE POTENCIA
-CLASIFICACIÓN DE LAS ETAPAS DE POTENCIA.
-CLASIFICACIÓN DE LAS ETAPAS DE POTENCIA.
Los transistores y amplificadores integrados que se utilizan para procesar señales son de baja potencia y solo tienen capacidad de generar en su salidas tensiones en el rango de voltios, proporcionar intensidades en el rango de los miliamperios, y en consecuencia, transferir a las cargas conectadas a su salida, potencias en el rango de miliwatios o décimas de watios.
En muchas aplicaciones dentro de los sistemas de instrumentación, tales como en el control de pequeños motores, en el gobierno de sistemas de altavoces, etc., se necesitan proporcionar potencias en el rango de las decenas o centenas de watios, y para conseguirlo se requiere utilizar amplificadores de media potencia.
Un amplificador de potencia es aquel cuya etapa de salida se ha diseñado para que sea capaz de generar uno rangos de tensión e intensidad mas amplios de forma que tenga capacidad de transferir a la carga la potencia que se requiere. Cuando se diseñan utilizando amplificadores operacionales, un amplificador de potencia consiste en una etapa de baja potencia basada en un amplificador operacional, a la que se dota de una etapa (interna o externa) de potencia, con ganancia reducida, (habitualmente 1) pero con capacidad de suministrar las intensidades que se necesitan. Para seguir manteniendo los beneficios de la realimentación, la etapa de potencia debe estar incluida dentro del bucle de realimentación.
vi
vo
-
Amplificador operacional
+
Etapa de potencia
El amplificador operacional proporciona la alta ganancia que se necesita en el bucle de realimentación para reducir la no linealidad y distorsión que introduce la etapa de potencia. Sin embargo, en estas configuraciones, la posible ganancia extra de la etapa de potencia, y las cargas reactivas, introducen nuevos problemas de estabilidad.En este tema solo se tratan etapas de media o baja potencia, para baja frecuencias, realizables mediante circuitos con dispositivos semiconductores y sin la utilización de transformadores. No obstante, los problemas que se plantean son similares a los que se presentan en alta frecuencia, o para potencias más altas.
Las etapas de potencias se clasifican en función del punto de trabajo en que se polarizan los dispositivos de potencia, y en la fracción del ciclo de señal durante las que conducen, como consecuencia de ello.
Etapa clase A: El dispositivo se polariza en una zona de respuesta lineal, con capacidad de responder a señales de cualquier polaridad. Su principal ventaja es que sigue un modelo de amplificador lineal convencional. Su desventaja es que aún con señal nula disipa una cantidad considerable de potencia.
Etapa clase B: El dispositivo se polariza en el extremo de la zona de respuesta lineal, y en consecuencia sólo tiene capacidad de responder a señales con una determinada polaridad. En estas etapas no se produce disipación de potencia cuando la señal es nula, pero requiere la utilización de etapas complementarias para pode generar una respuesta bipolar.
Etapa clase AB: El dispositivo se polariza en la zona lineal pero en un punto muy próximo al extremo de respuesta lineal. Esta configuración es una variante de la etapa de tipo B en la que se sacrifica la disipación de una pequeña cantidad de potencia cuando opera sin señal, a cambio de evitar la zona muerta de respuesta.
Etapa clase C: El dispositivo se polariza en zona de respuesta no lineal, de forma que los dispositivos activos sólo conducen en una fracción reducida del periodo de la señal. De esta forma se consiguen rendimientos máximos, aunque se necesitan elementos reactivos que acumulen la energía durante la conducción y la liberen en el resto del ciclo en el que el dispositivo no conduce. Se puede utilizar para amplificar señales de banda muy estrecha.
http://www.ctr.unican.es/asignaturas/instrumentacion_5_IT/IEC_5.pdf
domingo, 18 de septiembre de 2011
TABLAS DE LA VERDAD DE LAS COMPUERTAS LOGICAS
Compuerta AND: Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x. La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0. Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1. El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*). Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1. | |
Compuerta OR: La compuerta OR produce la función sumadora, esto es, la salida es 1 si la entrada A o la entrada B o ambas entradas son 1; de otra manera, la salida es 0. El símbolo algebraico de la función OR (+), es igual a la operación de aritmética de suma. Las compuertas OR pueden tener más de dos entradas y por definición la salida es 1 si cualquier entrada es 1. | |
Compuerta NOT: El circuito NOT es un inversor que invierte el nivel lógico de una señal binaria. Produce el NOT, o función complementaria. El símbolo algebraico utilizado para el complemento es una barra sobra el símbolo de la variable binaria. Si la variable binaria posee un valor 0, la compuerta NOT cambia su estado al valor 1 y viceversa. El círculo pequeño en la salida de un símbolo gráfico de un inversor designa un inversor lógico. Es decir cambia los valores binarios 1 a 0 y viceversa. | |
Compuerta Separador (yes): Un símbolo triángulo por sí mismo designa un circuito separador, el cual no produce ninguna función lógica particular puesto que el valor binario de la salida es el mismo de la entrada. Este circuito se utiliza simplemente para amplificación de la señal. Por ejemplo, un separador que utiliza 5 volt para el binario 1, producirá una salida de 5 volt cuando la entrada es 5 volt. Sin embargo, la corriente producida a la salida es muy superior a la corriente suministrada a la entrada de la misma. De ésta manera, un separador puede excitar muchas otras compuertas que requieren una cantidad mayor de corriente que de otra manera no se encontraría en la pequeña cantidad de corriente aplicada a la entrada del separador. | |
Compuerta NAND: Es el complemento de la función AND, como se indica por el símbolo gráfico, que consiste en una compuerta AND seguida por un pequeño círculo (quiere decir que invierte la señal). La designación NAND se deriva de la abreviación NOT - AND. Una designación más adecuada habría sido AND invertido puesto que es la función AND la que se ha invertido. Las compuertas NAND pueden tener más de dos entradas, y la salida es siempre el complemento de la función AND. | |
Compuerta NOR: La compuerta NOR es el complemento de la compuerta OR y utiliza el símbolo de la compuerta OR seguido de un círculo pequeño (quiere decir que invierte la señal). Las compuertas NOR pueden tener más de dos entradas, y la salida es siempre el complemento de la función OR. |
http://perso.wanadoo.es/fushigisensei/comp_log.htm
Suscribirse a:
Comentarios (Atom)
